9 -
Fz<r>=~mr)r{exp[— Ry ]+Rll/"_ (1+erf—R1—)}.
LR ag, v 2V gz,

The results of the reconstruction of the heat fluxes of (2) obtained from Eq. (30) are presented in Fig. 1b,
as a function of the time and the position of the temperature sensor. It follows from the figure that placing the
temperature sensor farther from the surface of the heat-flux pickup being heated leads to-greater errors. This
obviously follows from the violation of the approximation of the temperature field at a point close to the surface.

Thus, the most reliable results of q can be obtained in the case when the temperature measurement is
made in the immediate vicinity of the heating surface.
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SPLINE IDENTIFICATION OF HEAT FLUXES

E. N. But UDC 536.629.7

A method is discussed for the determination of one-dimensional transient heat fluxes from the
experimentally measured temperature using a spline approximation of the heat flux with sub-
sequent application of the procedures of parametric identification.

A thermal experiment can be treated as a certain measuring system with an unknown input, subject to
determination, and an output which is measured with noise. A one-dimensional body of finite length with known
thermophysical characteristics, dependent on the temperature in the general case, with a thermally insulated
lateral surface and with the temperature of the end being measured, serves asthe physical model of a mea-
suring system for the determination of a one-dimensional heat flux. Serving as the mathematical model for
the measuring system is a system of equations consisting of a differential—difference system of equations, ap-
proximating the one dimensional Fourier heat-conduction equation by spatial quantization at n points, and the
observation equation:

T=AT L BQ, 1)
Y=HT 4+ W,

where

T=IT,T, ... T 0 .
Q=[q10 ...0q2]t9 B: 0 0
H=po...oo, | -

L 0 (cp)ph
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M, i+ is the thermal conductivity normalized to the temperature (Tj + Tj+;)/2, (cp)i is the heat capacity nor-
malized to the temperature Tj, W is the measurement noise, and n is the number of nodes of the spatial ,
quantization.

We determine the heat flux Q as the solution of a problem of nonlinear programming, i.e., as a function
minimizing some functional F(Y, Y(Q)) with the constraints imposed on Y(Q) by the system (1), The measure-~
ment Y is unique information obtained as a result of the given experiment, and it is therefore natural to consid-
er the deviation (discrepancy) between the temperature Y measured experimentally and S?(Q) calculated from
the system (1) with the given Q and W = O as the criterion of accuracy of the results of the interpretation of
the experiment. The functional F(Y, ¥(Q)) for the determination of the heat flux can be diverse, and [1, 2] and
others are devoted to its selection. Let us consider whether it is possible to use the ordinary root-mean-
square functional of discrepancy:

u

1%
T, 1

F(Y, ¥) = [Y — V] [Y — ¥] de @)

to determine the heat flux with the help of B-splines.

In many practical cases the heat flux is a continuous function of time. In those cases when we have this
a priori information we can approximate the heat flux ¢(r) by B-splines of order I (see Appendix 1}):

g (v) = ¥ c,Sp, (7). (3)
k==0 .

Such an approximation allows us to analyze, in place of the functional (2), a function of p + 1 variables
Cgs+++»Cp, which in the case of discrete measurements has the form

& o .
DY, ¢ .. hCp)= o Z‘l[Yi—Yi(co, RN B TR PR 4
where Y; = Y(rj).

In the linear case the problem of nonlinear programming for the function &(cy,..., cp) with the constraints
(1) has a unique solution.
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Fig. 2. Effect of the number of measurements on By, (1) and By ).
Fig. 3. Example of the approximation of the heat flux by B~splines.
Statement 1. The quadratic quality function (4), where ¥ is the solution of the system (1) at the time
Ti, in the space of the paxjameters Cosee+sCp has a local minimum which is global (see Appendix 2).

According to Statement 1, the stated problem has a unique solution, but sometimes it is practically im-
possible to find this solution because the quality function & forms a gully in the region of the minimum. Let us
study the practical identification [4] of the measuring system (1) using a covariation matrix of the estimating
errors in the coefficients of the B-splines:

k (5)

To find the sensitivity functions Uji we differentiate the system (1) with respect to cj and obtain the sys-
tems

U,=AU,+ B ) ,
dc,
aQ

U, =AU B ,

p=AU,+B 5~
where
aT
U ==
* oc,

Solving this system, we obtain the sensitivity functions, and from these we construct the matrix P. Since
in the first section q(r) is approximated by only two coefficients ¢, and cp, the covariation matrix of the estimat-
ing errors in ¢ and cp has the form '

sz_z_ [Boo Bm] _o [Aoo AOI]_‘ ,
N 1By Byl N [Ap Aul’

where By, By, and By, are coefficients dependent on the structure of the system (1) and the form of the quality
function. )

Such a representation of the covariation matrix was first obtained in [5]. In contrast to [5], which used
the scalar product of the sensitivity functions U; and Uj, referred to the observation time, as Ay;, we take the
scalar product of the sensitivity vectors Ujk and Uy, referred to the number of measurements in the approxi-
mation section, as Aijs which does not alter the general representation of the matrix P.

The form of the quality function & and the structural coefficients By, and B;; were studied in a wide in-
terval of values of the length A of the approximation section, expressed in the dimensionless time Fo. The
ellipticity ¢ of the function &, i.e., the ratio of the semiaxes of the ellipse in the region of the minimum,
ranges from 0.2 to 0.3, which permits a solution of the stated problem,
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The effect of the number of measurements on the coefficients Bjj and on the ellipticity & was revealed
(Fig. 1). Changes in the relative thermal conductivity A = A/l and the length A of the approximation section
cause proportional changes in By, and By;. Graphs of the changes, presented in Figs. 1-3, allow one to esti-
mate the errors in the determination of the coefficients ¢, and cp. '

Conclusion, The heat-measuring system (1) with approximation of the heat flux by first-order B-splines
is identifiable in practice. The practical application of the method of spline identification is described in [3].

Example. Let us determine the error in the identification of ¢j and cp for a heat-measuring system with
the following parameters: length of rod I =0.01 m; cp = 3.35-10% J/°K-m?; A =1.04:10> W/m-°K; A =1 sec =
0.3F0; o = Y°K;

V' By < 2af; VB, <28af;
« allows for the length A while g allows for the thermal conductivity as follows:
o= 107", p=10"
for  A=10Fo, %= 10?{ W ]

and then

o (c) = *lfﬁ VBa= 3
o . 2810°
@ =TF VBT F

If the expected heat flux is on the order of 10° W/m? then the relative error is

2.10° 2

Arelle) = = —— = —Z_ o,

relce) VN VN
2.8-100 2.8

et 0 ,

et °yN  yN*

and with a number of measurements N =4 per section we obtain Apej(c,) =1% and Apel1fcy) =1.4%.

APPENDIX 1
The B-spline Spy(r) is a finite polynomial hat function introduced by Schoenberg in 1946:

Spy, (7) =

P
In the interpolation of the given function [(1;)= Z ¢,Sp, (1;) in a table the coefficients are ¢ =f(7).
k=0

APPENDIX 2

Proof of Statement 1. It is known that the quadratic function x? + & has one minimum point x = 0, The
solution Y of the system (1) d‘epends linearly on Q, which in turn depends linearly on Ck, and consequently, by
the property of transitivity, Y depends linearly on ckx. The linear function satisfies the condition of convexity,
and hence Yis a convex function of cy.

The measured temperatures are finite, and ¥ < const bound the convex set in the space of the parameters
ck [6]. We note that &(¥, ¢, ..., cp) is convex, by the property of transitivity of convex functions, since

o, Y) = —;/-2 IY — Y'Y — Y] is convex with respect to ¥. Now we use the statement of the theory of non-

linear programming [7] that in a solution of a problem of convex programming (minimization of a convex func-
tion with convex limits) a local minimum is global.
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NOTATION

T, A, U, B, Q, matrices and vectors of the appropriate dimensions; [ ]-!, sign of matrix inversion
[ ‘]t, sign of matrix transposition; A, thermal conductivity; c, heat capacity; p, specific density; ¢, ratio of
semiaxes of ellipse; N, number of measurements per section; A, length of approximation section; o2, disper-
sion of noise.
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SOME ANALYTICAL METHODS OF SOLVING INVERSE
(COEFFICIENT) PROBLEMS OF HEAT-CONDUCTION THEORY

A. A. Aleksashenko UDC 536.24.02

Some analytical methods are presented for the determination of thermophysical parameters
without linearization of the heat-conduction equation. A qualitative study of the temperature
fields is used. :

1. Themathematical descriptionof intense heat-transfer processes is connected with the necessity of
allowing for the temperature dependence of the thermophysical parameters. For this, in the one-dimensional
case, the nonlinear heat conduction is written as

ey S--2- [am 3]+ AL R, D, &
ot 0x 0x x ax

We note that until recently insufficient attention has been paid to the mathematical side of the determina-
tion of thermophysicai parameters, especially to questions of the accuracy and of the errors which are intro-
duced. The complexity of the determination of thermophysical parameters has been aggravated by the absence
of exact analytical solutions for (1). It is just these reasons (during the time which preceded the extensive use
of electronic and analog computers and the consideration of questions of the correctness of the solutions of in-
verse problems) which forced investigators to use various approximate solutions (most often linearized ones).
In this case nonlinear parameters were replaced by piecewise-linear parameters and so forth. The errors
introduced in the process do not yield to analysis in general form, which prevents one from giving a reliable
estimate of the accuracy of the parameters obtained, especially when they are strongly nonlinear. As an illus-
tration we cite the following two examples. As is known, one of the methods of determining parameters often
applied in engineering practice is the method of the regular regime of type I [1-2]. Inthis case one is confined
to one (or several) terms of the series in the calculating equations for the linearized solutions of (1). The
error introduced in the process (the remainder of the series) has usually been taken as the error in the deter-
_mination of the parameter. In fact, there are two kinds of errors: those for direct and inverse problems {3],
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